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INTRODUCTION

moothing and interpolation are two aspects of the problem of “fitting” a
iction to data. In some instances one has only smoothing, in others only
polation and in others both smoothing and interpolation. We shall
ume that interpolation means that the function values at a data location
tch the data values, this property is variously called perfect or exact.
ny applications the function and perhaps even its form are unknown,
e are no state equations and hence one must make some form of
nptions in order for the problem to be well-posed. Although we begin
an example where the data locations are in 1-space, we shall mostly
ider the case of k-dimensional Euclidean space. There are at least two
ent objectives in fitting a function to data (as we shall see these are
equivalent but lead to different approaches to the problem), one is to
a function in analytic form and secondly, to estimate or compute the
of the function at non-data points. At the end we shall also consider
of smoothing that is somewhat different and more akin to filtering.

EXAMPLE

\U1), -, (Tn,Yn) be points in 2-space and we visualize them on a
olot. The vertical axis is to represent the values of the function and
izontal the independent variable (the data locations). Depending on
ta, to interpolate may result in a very irregular curve. Depending
ze of n, the choice of the form of the interpolating function may
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mean there is no solution. For example, if the interpolating function is a
polynomial in z, then the degree must be at least n. Smoothing would
correspond to assuming a model of the form

y=F(z)+e (1)

where F(z) is the smoothing function and € represents the noise or error.
Smoothing then corresponds to removing the noise or error from the data.
The most obvious way to do this is to use Least Squares, i.e. to minimize

Y i P @)

=1

Each term in the sum could also have a weighting coefficient, the problem
then is to decide the weights. As is well-known, if F*(x) is a polynomial of
degree less than n then minimizing the expression in eq(2) leads to a system
of linear equations (for the unknown coefficients). The choice of the degree
of the polynomial corresponds to a choice about the degree of smoothing.
The extreme case is a polynomial of degree one, i.e., a line is fitted to the
data.

Although the above description of the problem is essentially determinis-
tic and requires no theoretical assumptions, it is equivalent to a statistical
version. Suppose that the model is of the form

Y=A+BX+¢ (3)

where Y is a random variable with mean A + BX, the &’s are assumed fo
be independent normal with mean zero and constant variance o2. Then the
Maximum Likelihood estimates of A, B are the same as those obtained by
Least Squares. The statistical formulation is useful not only in this case
but also later on. At this point it is useful because it suggests an additional
aspect of the problem.

s n—i—l Z i —y)? (4)

is a measure of the variation in the y-values, where
1 n
Y= s ;yi (5)

Obviously one smoothing of the data is to take F'*(z) as a constant, F*(z) =
y is the optimal choice for the constant. We may then ask how much better
it is to use a model such as in eq(3), this is quantified by

;12- [s2 i zn: LR 0
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quantity is commonly known as the percent variance explained (by the
In the statistical model this quantity has an F distribution.

lly we give a brief illustration of the additional form of smoothing
ded to in the Introduction. Let [c, d] be an interval such that each z; is in
nterval and let m be an integer smaller than n (usually much smaller).
ition the interval [c, d] into m disjoint, equal sized sub- intervals. For
I sub-interval, compute the average of the y;’s for which the correspond-
;'s are in the sub-nterval. Let this average be denoted by u; and the
id-point of the sub-interval by w;. We now replace the original data set
)y oy (%n,Yn) by the data set (uy,wy), ..., (Um,Wn). The data has
i “smoothed” but without obtaining an analytic form for the function.
interpolating function might then be fitted to the smoothed data. An
flous question to ask is whether interpolating the smoothed data is equiv-
it to smoothing the interpolated data. Furthermore, the interpolating
ction is in some sense an estimator for the “true” but unknown function
it is reasonable to ask how smoothing the “true” function relates to
polating the smoothed data or smoothing the interpolating function.

POSITIVE DEFINITENESS

ause positive definiteness and conditional positive definiteness are criti-
) the unique determination of the coefficients in a radial basis function
olator, for completeness basic properties are given.

et g(z,y) be a real valued function defined on Ry x Rx. g(z,y) is
ve definite if for any points x4, ..., , and any coefficients Ay, ..., A, the

atic form
n n

YD Adjglenaj) (7)
i=1 j=1
itive (except when all the coefficients are zero). Of course then g(z;,z;)
a positive definite matrix which is invertible. Let fo(z),..., fp(z)
linearly independent functions defined on Ry, then g(z,y) is con-
ally positive definite with respect to these functions if the quadratic
(7), is positive (except when all the coefficients are zero) for all coef-
tisfying

n

Zx\ifj(:z:j)zo forallj=0,..,p (8)
i=1

case of a conditionally positive definite function, g(z;,z;) does not
¢ a positive definite matrix and in general this matrix is not invert-
atrix will have both positive and negative eigenvalues. However
wing matrix is invertible

ExS ®
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where the submatrix G has entries g(z;, z;) and the submatrix F has entries
fj(x:). In the case that the f;(x)’s are monomials in the coordinates of z,
Micchelli (1986) has shown that this matrix is invertible. The proof is easily
extendable to the more general case, see Myers (1988).

4 FITTING RADIAL BASIS FUNCTIONS

Consider data of the form (z1,y1), ..., (Zn,¥n) €xcept that now we allow the
x;’s to be points in k-dimensional space. A radial basis function interpolator
can be written in the form

n 4
F'(@) =) big(z,z:)+ Y a;fi(z) (10)
=1 j=0

where g(z,t) is a kernel function with properties to be determined later
and the f;(z)’s are linearly independent functions, e.g., monomials in the
coordinates of x of total degree j. By analogy with the example in the
previous section consider

n
@(b1, ..., bn, 00, ..., 8p) = Z[yi—F‘(aci)] (11)
i=1
Since (b1, ..., bn, @0, ..., ap) is linear in the unknown coefficients, the mini-

mum can be found by setting the partial derivatives equal to zero. At this
point there are no constraints on the coefficients. One obvious solution is
simply

() F'(-’L'l)

Yn = F'(zn) (12)

Unfortunately there are too many unknowns for this system to have a
unique solution unless all of a;’s are zero. In that case a sufficient con-
_ dition for invertibility of the coefficient matrix is that g(z,t) be positive
definite. Michelli (1986) considered the case of ap not zero and the kernel
function |z—t|. This kernel is not positive definite but rather is conditionally
positive definite and one must add an additional constraint, namely

bk A by =0 (13)

In that case the system has a unique solution and F'* is an interpolating
function. If not all of the [y; — F*(x;)]’s are zero then the coefficients are
the solution of the system

|5 Jte m1[2]=15][7] (1
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where G and F are as above, B is the vector of b;’s, A is the vector of a;’s
and Y is the vector of y;’s. Unfortunately

[¢ F]

is not square (hence not invertible) and

7]

is not square and hence not invertible. However if FTB = 0 then the above
system has the same solution as

Gy, Bl tabe® ol bl w[iCst Bl i
FT 0 FT 0 A“FTO] 0] ()
Hence if g(z,y) is conditionally positive definite with respect to the f;(x)’s
then B -
G F
| FE0

J

is invertible and hence the solution is
BRSO Yo B IR 2

[2]-[= 7] (5] ®
This neatly shows why the additional constraint equations are needed for
the radial basis function interpolator and what they are. Suppose that fo(z)
is identically 1 (zero degree polynomial) and g(z,y) is at least asymptotic
to a constant as £ —y tends to infinity. Then it is easy to see that for points
sufficiently far away from the data locations, the first term on the right in
eq (10) is zero or nearly so, hence the “extrapolated” is given only by the
second term. The second term is analogous to a trend surface. Hence the
two terms in eq(10) might be thought of representing the local variation
and the regional variation. An extreme version of this is obtained when
g(z,y) is taken to be the Dirac delta function, i.e., is 1 for ¢ = y and zero
otherwise. It is easy to see that the radial basis function estimator coincides
with the data values at data locations but otherwise are given by the trend
surface, David and Marcotte and David (1988). Clearly the radial basis

function interpolator is not smoothed in that case even though the defining
condition, eq (11), seems to suggest only smoothing.

5 THE DUAL FORM

Using the solution given in eq(16) the radial basis function interpolator can
be written in a different form

F'@)=[Go R )[B A" (17)
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where Gy is the vector with entries g(x, z;) and Fp is the vector with entries
fi(z) @ =1,..n,j =0,..,p). Substituting the solution and noting that
F*(z) is scalar valued

Fr@)=[A pllY 0]"=3 X@w (18)

=1

where [ A |7 is the solution of the system

G F Al _ | Go
= ][]-[%] @
Of course the entries in A\, depend on z. Recall that positive definite

functions are essentially (auto) covariances and the quadratic form given in
eq(7) is the same as the variance of the linear combination

n

> oaw; (20)

where the W;’s are random variables. Note that the W;’s each have finite
variance. Similarly a conditionally positive definite function is the negative
of a generalized covariance, i.e., it can be used to compute the variance of a
linear combination of random variables where the sum of the coefficients is
zero and the random variables need not have finite variance. This stochastic
formulation suggests a way to deal with smoothing and interpolation at the
same time. In deriving the system of equations for the coefficients of the
radial basis function interpolator it was assumed that the data were values
of the function to be interpolated. Now we assume that the data are the
values of the function to be interpolated plus an error term. That is, we use
the model given in eq (1) and impose statistical conditions on it. We treat
F(x), the unknown function, as a random function with covariance function
9(z,y). The error term is assumed spatially uncorrelated and uncorrelated
with F(z). The covariance of the error term is the Dirac delta function.
The covariance function of Y (z) is given by -

g(z,y)+o*ifz=y

and by g(z,y) if z # y. The system in eq (19) is slightly modified to become

FAOEE.

Reversing the steps for proceeding from eq (10) to eq (18) we obtain the
radial basis function interpolator with smoothing. The parameter o2 is
analogous to the smoothing parameter in the formulation of the smoothing
spline. The smoothing spline is a special case of this formulation but with
a particular generalized covariance.
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6 INTEGRATION AND SMOOTHING

Let L be a grid of points superimposed on the region of interest and suppose
that ust are the centers of the cells determined by the grid, s=1,...,m,t =
1,...,q. Then one way to smooth the values at the centers of the cells is
to replace the value at each center by the average over its cell. There are
two problems to be resolved, (1) it is likely that the centers are not data
locations, i.e., the values at the centers are not (all) known, (2) the values
at other points in the cell (values to be averaged) are also likely not known.
However the formulation given in eq(18) allows estimation of these averages
using only the data locations that are given (which may or may not be
within a cell of interest). Let Vst be the cell centered at ust, then the
average is given by

1

Ay = — F(z)dz (22)
‘/‘9t Vst
n

Ay = Z/\i(vst)yi (23)
=1

and the coefficients are obtained as the solution of a system almost the same
as in eq(1), except that the entries on the right hand side, in Go, must be
replaced by integrals

1
g(xi, Vae) = 7‘/ g(z;, w)dw (24)
st JVy,
Note that ;
w=g [ P (25)
st ng

Now we note that it is not necessary to choose a grid but rather only to
choose a cell size and orientation, while it may not be practical to consider
computing an average such as in eq (25) for each point in a region the
properties of the smoothed function are still of interest.

7 MEASURES OF SMOOTHING

Suppose that the region of interest V is the union of congruent, disjoint
(except for common edges) rectangles, V; (See the description of the grid
above). Let

Agial -‘17 /V F(z)do (26)

Ay then is the average value of F(z) over the region V. Obviously

m q

Ay = 5;;vﬂf1ﬂ (27)
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A measure of the smoothness of the original (but unknown) function is given
by

st = 2 / [F(y) - AvlPdy
- ZZ 7 [ Fw) - avia (28)

S? is analogous to a regional variance (spatial rather than ensemble). Sim-
ilarly let

1
=g [ 1Fw) - Aulay (29

then S?, is variance within the rectangle V;;. Substituting from (27) we
obtain

/V [F@) - Aul?dy

/ [F(y) =5 Ast + Ag — AV]2dy

Vs t

/ [F(y) — AsePdy + Ve [Ase — Av]® (30)

Vst

The cross-product terms are all zero. Let v denote a generic rectangle, i.e.,
congruent to all the V;; but centered at the origin. Then the volume of v =
volume of V;; and V = mqu then (29) becomes

2 [ 1P - Avitay

Kepotgion s o sy 2
S I TR 55 9 P
J=1k=1 q j=1 k=1
Hence the total variance is the average of the local variances plus the vari-
ance of the average values, since the total variance is fixed as one of the two

terms on the right of (31) increases the other must decrease. As shown in
Myers (1997), by applying expected values to (31) we obtain

9(V,V) = 9(0,v) + 9(v, V) (32)

where
V) = 73 [ [ owv)dedy (39
60.0) = = [ [ o@)dedy (349

and

o0,v) = = [ [ sw)izay (39



Boundary Element Technology 373

If instead of simply associating an average over a cell with its center we use
a moving cell, i.e., for each point z in V we let

Au(a:) = l‘/‘ F(:E)d.’E (36)
UV Ju(z)

where v(z) is a cell centered at . Then the smoothness of the averaged
function is

1
2=+ /V [Auey — Av]Pda (37)

The smoothness of the original function is given by (28). The degree of
smoothing is quantified nby

1
St = [ o - F)Pds (38
v
By using the Cauchy-Schwartz in equality it is easy to show that

[Sy — 82 < 825 < [Sy + 5)° (39)

As the volume of v(z) tends to zero S2 tends to S? and similarly as the
volume tends V, S2 tends to zero. Note that in practice where V is a bounded
region we have to consider the intersections of the v(z) and V' which near
the boundaries of V' may be proper subsets of v(z), i.e., there will likely be
less smoothing near the boundary.
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